[이뉴스투데이 백연식 기자] AI가 단순히 ‘그럴듯하게 그리는 수준’을 넘어, 옷이 왜 흔들리고 주름이 생기는지까지 이해하는 시대가 열렸다. KAIST 연구진은 3차원 공간에서의 움직임과 상호작용을 실제 물리 법칙처럼 학습하는 새로운 생성형 AI를 개발했다. 기존 2D 기반 영상 AI의 한계를 뛰어넘은 이번 기술은 영화, 메타버스, 게임 속 아바타의 현실감을 높이고 모션캡처나 3D 그래픽 수작업을 크게 줄일 수 있을 전망이다.
KAIST는 김태균 전산학부 교수 연구팀이 기존 2D 픽셀 기반 영상 생성 기술의 한계를 극복한 공간·물리 기반 생성형 AI 모델 ‘MPMAvatar’를 개발했다고 22일 밝혔다.
연구팀은 기존 2D 기술의 문제를 해결하기 위해, 가우시안 스플래팅(Gaussian Splatting)으로 다중 시점 영상을 3차원 공간으로 재구성하고, 여기에 물리 시뮬레이션 기법(Material Point Method, MPM)을 결합한 새로운 방식을 제안했다.
즉, 여러 시점에서 촬영한 영상을 입체적으로 재구성하고, 그 안에서 물체가 실제처럼 움직이며 상호작용하도록 물리 법칙을 AI가 스스로 학습하게 한 것이다.
물체의 재질·형태·외부 힘에 따른 움직임을 계산하고, 그 결과를 실제 영상과 비교해 AI가 물리 법칙을 스스로 학습할 수 있도록 했다.
연구팀은 3차원 공간을 점(포인트) 단위로 표현하고, 각 점에 가우시안과 MPM을 함께 적용해 물리적으로 자연스러운 움직임과 사실적인 영상 렌더링을 동시에 구현했다.
즉, 3D 공간을 수많은 작은 점들로 쪼개어 각 점이 실제 물체처럼 움직이고 변형되도록 만들어, 현실과 거의 구분이 안 될 만큼 자연스러운 영상을 구현한 것이다.
옷처럼 얇고 복잡한 물체의 상호작용을 정밀하게 표현하기 위해, 물체의 표면(메쉬)과 입자 단위 구조(포인트)를 함께 계산하고, 3차원 공간에서 물체의 움직임과 변형을 물리 법칙에 따라 계산하는 MPM(Material Point Method) 기법을 활용했다.
옷이나 물체가 움직이며 서로 부딪히는 장면을 사실적으로 재현하기 위해 새로운 충돌 처리(collision handling) 기술을 개발했다.
이 기술을 적용한 생성형 AI 모델 MPMAvatar는 느슨한 옷을 입은 사람의 움직임과 상호작용을 사실적으로 재현하고, AI가 학습 과정에서 본 적 없는 데이터도 스스로 추론해 처리하는 ‘제로샷(Zero-shot)’생성에도 성공했다.
제안된 기법은 강체, 변형 가능한 물체, 유체 등 다양한 물리적 특성을 표현할 수 있어, 아바타뿐만 아니라 일반적인 복잡한 장면 생성에 활용될 수 있다.
김태균 교수는 “이번 기술은 AI가 단순히 그림을 그리는 것을 넘어, 눈앞의 세계가 ‘왜’ 그렇게 보이는지까지 이해하도록 만든 것으로 물리 법칙을 이해하고 예측하는 ‘Physical AI’의 가능성을 보여준 연구로 이는 AGI(범용 인공지능)로 가는 중요한 전환점”이라고 설명했다. 이어 “가상 프로덕션, 영화, 숏폼, 광고 등 실감형 콘텐츠 산업 전반에 실질적으로 적용돼 큰 변화를 만들어낼 것”이라고 말했다.
현재 연구팀은 이 기술을 확장해, 사용자의 텍스트 입력만으로도 물리적으로 일관된 3D 동영상을 생성할 수 있는 모델 개발을 진행 중이다.
Copyright ⓒ 이뉴스투데이 무단 전재 및 재배포 금지
본 콘텐츠는 뉴스픽 파트너스에서 공유된 콘텐츠입니다.