KAIST, 숨겨진 다자 간 관계 추적·복원하는 AI ‘마리오’ 개발

실시간 키워드

2022.08.01 00:00 기준

KAIST, 숨겨진 다자 간 관계 추적·복원하는 AI ‘마리오’ 개발

이뉴스투데이 2025-08-05 09:10:26 신고

3줄요약
MARIOH 기술을 활용해 저차원 논문 공저 관계로부터 고차원 관계를 100% 정확도로 복원한 예시. [사진=KAIST]  

[이뉴스투데이 백연식 기자] 국내 연구진이 이처럼 불완전한 정보만으로도 고차원 상호작용을 정밀하게 복원하는 AI‘마리오(MARIOH)’를 개발하며, 소셜 네트워크, 뇌과학, 생명과학 등 다양한 분야에서 분석 가능성을 열었다.

KAIST는 신기정 김재철AI대학원 교수 연구팀이 저차원 상호작용 정보만으로 고차원 상호작용 구조를 높은 정확도로 복원할 수 있는 인공지능 기술인 ‘마리오(MARIOH, Multiplicity-Aware Hypergraph Reconstruction)’를 개발했다고 5일 밝혔다.

고차원 상호작용 복원이 어려운 이유는 동일한 저차원 상호작용 구조로부터 파생될 수 있는 고차원 상호작용의 가능성이 무수히 많기 때문이다.

연구팀이 개발한 MARIOH의 핵심 아이디어는 저차원 상호작용의 다중도(multiplicity) 정보를 활용해, 해당 구조로부터 파생될 수 있는 고차원 상호작용의 후보 수를 획기적으로 줄이는 데 있다.

더불어, 효율적인 탐색 기법을 통해 유망한 상호작용 후보를 신속하게 식별하고, 다중도 기반의 심층 학습 기술을 활용해 각 후보가 실제 고차원 상호작용일 가능성을 정확하게 예측한다.

연구팀은 10개의 다양한 실세계 데이터 셋을 대상으로 한 실험 결과, MARIOH는 기존 기술 대비 최대 74% 높은 정확도로 고차원 상호작용을 복원하는 데 성공했다.

예를 들어, 논문 공저 관계 데이터에서는 98% 이상의 복원 정확도를 달성해, 약 86% 수준에 머무는 기존 기술을 크게 앞질렀다. 또한, 복원된 고차원 구조를 활용할 경우, 예측, 분류 등 다양한 작업에서의 성능이 향상되는 것으로 나타났다.

신 교수는 “MARIOH는 단순화된 연결 정보 정보에만 의존하던 기존 접근에서 벗어나, 실제 세계의 복잡한 연결 관계를 정밀하게 활용할 가능성을 열어 준다”며 “단체 대화나 협업 네트워크를 다루는 소셜 네트워크 분석, 단백질 복합체나 유전자 간 상호작용을 분석하는 생명과학, 다중 뇌 영역 간 동시 활동을 추적하는 뇌과학 등 다양한 분야에서 폭넓게 활용될 수 있을 것”이라고 말했다.

Copyright ⓒ 이뉴스투데이 무단 전재 및 재배포 금지

본 콘텐츠는 뉴스픽 파트너스에서 공유된 콘텐츠입니다.

다음 내용이 궁금하다면?
광고 보고 계속 읽기
원치 않을 경우 뒤로가기를 눌러주세요

실시간 키워드

  1. -
  2. -
  3. -
  4. -
  5. -
  6. -
  7. -
  8. -
  9. -
  10. -

0000.00.00 00:00 기준

이 시각 주요뉴스

알림 문구가 한줄로 들어가는 영역입니다

신고하기

작성 아이디가 들어갑니다

내용 내용이 최대 두 줄로 노출됩니다

신고 사유를 선택하세요

이 이야기를
공유하세요

이 콘텐츠를 공유하세요.

콘텐츠 공유하고 수익 받는 방법이 궁금하다면👋>
주소가 복사되었습니다.
유튜브로 이동하여 공유해 주세요.
유튜브 활용 방법 알아보기