OPINION: AI was central to two of 2024's Nobel prize categories. It's sign of things to come

실시간 키워드

2022.08.01 00:00 기준

OPINION: AI was central to two of 2024's Nobel prize categories. It's sign of things to come

Aju Business Daily 2024-10-14 10:21:17 신고

View at the Google DeepMind office building in London on Oct 9 2024 AP-Yonhap
View at the Google DeepMind office building in London on Oct. 9, 2024. AP-Yonhap
SEOUL, October 14 (AJP) - The 2024 Nobel Prizes in physics and chemistry have given us a glimpse of the future of science. Artificial intelligence (AI) was central to the discoveries honored by both awards. You have to wonder what Alfred Nobel, who founded the prizes, would think of it all.

We are certain to see many more Nobel medals handed to researchers who made use of AI tools. As this happens, we may find the scientific methods honored by the Nobel committee depart from straightforward categories like "physics," "chemistry" and "physiology or medicine."

We may also see the scientific backgrounds of recipients retain a looser connection with these categories. This year's physics prize was awarded to the American John Hopfield, at Princeton University, and British-born Geoffrey Hinton, from the University of Toronto. While Hopfield is a physicist, Hinton studied experimental psychology before gravitating to AI.

The chemistry prize was shared between biochemist David Baker, from the University of Washington, and the computer scientists Demis Hassabis and John Jumper, who are both at Google DeepMind in the U.K.

There is a close connection between the AI-based advances honored in the physics and chemistry categories. Hinton helped develop an approach used by DeepMind to make its breakthrough in predicting the shapes of proteins.

The physics laureates, Hinton in particular, laid the foundations of the powerful field known as machine learning. This is a subset of AI that's concerned with algorithms, sets of rules for performing specific computational tasks.

Hopfield's work is not particularly in use today, but the backpropagation algorithm (co-invented by Hinton) has had a tremendous impact on many different sciences and technologies. This is concerned with neural networks, a model of computing that mimics the human brain's structure and function to process data. Backpropagation allows scientists to "train" enormous neural networks. While the Nobel committee did its best to connect this influential algorithm to physics, it's fair to say that the link is not a direct one.

Training a machine-learning system involves exposing it to vast amounts of data, often from the internet. Hinton's advance ultimately enabled the training of systems such as GPT (the technology behind ChatGPT), and the AI algorithms AlphaGo and AlphaFold, developed by Google DeepMind. So, backpropagation's impact has been enormous.

DeepMind's AlphaFold 2 solved a 50-year-old problem: predicting the complex structures of proteins from their molecular building blocks, amino acids.

Every two years, since 1994, scientists have been holding a contest to find the best ways to predict protein structures and shapes from the sequences of their amino acids. The competition is called Critical Assessment of Structure Prediction (CASP).

For the past few contests, CASP winners have used some version of DeepMind's AlphaFold. There is, therefore, a direct line to be drawn from Hinton's backpropagation to Google DeepMind's AlphaFold 2 breakthrough.

David Baker used a computer program called Rosetta to achieve the difficult feat of building new kinds of proteins. Both Baker's and DeepMind's approaches hold enormous potential for future applications.

Attributing credit has always been controversial aspect of the Nobel prizes. A maximum of three researchers can share a Nobel. But big advances in science are collaborative. Scientific papers may have 10, 20, 30 authors or more. More than one team might contribute to the discoveries honored by the Nobel committee.

This year we may have further discussions about the attribution of the research on backpropagation algorithm, which has been claimed by various researchers, as well as for the general attribution of a discovery to a field like physics.

We now have a new dimension to the attribution problem. It's increasingly unclear whether we will always be able to distinguish between the contributions of human scientists and those of their artificial collaborators – the AI tools that are already helping push forward the boundaries of our knowledge.

In the future, could we see machines take the place of scientists, with humans being consigned to a supporting role? If so, perhaps the AI tool will get the main Nobel prize with humans needing their own category.

-------------------------------------------------------------------------------------------------------------------------

Nello Cristianini is a professor of rtificial intelligence at University of Bath in England.

This article was republished under a Creative Commons license with The Conversation. The views and opinions in this article are solely those of the author.

https://theconversation.com/ai-was-central-to-two-of-2024s-nobel-prize-categories-its-a-sign-of-things-to-come-240954

Copyright ⓒ Aju Business Daily 무단 전재 및 재배포 금지

본 콘텐츠는 뉴스픽 파트너스에서 공유된 콘텐츠입니다.

다음 내용이 궁금하다면?
광고 보고 계속 읽기
원치 않을 경우 뒤로가기를 눌러주세요

실시간 키워드

  1. -
  2. -
  3. -
  4. -
  5. -
  6. -
  7. -
  8. -
  9. -
  10. -

0000.00.00 00:00 기준

이 시각 주요뉴스

알림 문구가 한줄로 들어가는 영역입니다

신고하기

작성 아이디가 들어갑니다

내용 내용이 최대 두 줄로 노출됩니다

신고 사유를 선택하세요

이 이야기를
공유하세요

이 콘텐츠를 공유하세요.

콘텐츠 공유하고 수익 받는 방법이 궁금하다면👋>
주소가 복사되었습니다.
유튜브로 이동하여 공유해 주세요.
유튜브 활용 방법 알아보기