성능이 더 좋은 새로운 챗GPT 같은 AI 모델이 등장할 때마다, 특정 분야의 지식을 갖추기 위해 막대한 데이터와 비용을 들여 다시 학습해야 한다.
KAIST는 전산학부 김현우 교수 연구팀이 고려대학교 연구팀과 공동연구를 통해, 서로 다른 인공지능 모델 사이에서 학습된 지식을 효과적으로 ‘이식’할 수 있는 새로운 기술을 개발했다고 27일 밝혔다.
연구팀은 이러한 문제를 해결하기 위해 모델의 구조나 크기에 상관없이 학습된 지식을 재사용할 수 있는 전이 가능한 적응 기법(Transferable adaptation)인 ‘TransMiter’를 제안했다.
뉴스픽의 주요 문장 추출 기술을 사용하여 “이뉴스투데이” 기사 내용을 3줄로 요약한 결과입니다. 일부 누락된 내용이 있어 전반적인 이해를 위해서는 본문 전체 읽기를 권장합니다.