KAIST, AI ‘FlexGNN’ 개발···GPU 한 대로 95배 빠르게 그래프 분석
뒤로가기

3줄 요약

본문전체읽기

KAIST, AI ‘FlexGNN’ 개발···GPU 한 대로 95배 빠르게 그래프 분석

산업 현장에서는 금융 거래, 주식, SNS, 환자기록, 등 비정형 데이터를 그래프 형태로 분석하는 GNN(Graph Neural Network) 기반의 그래프 AI 모델이 적극 활용되고 있다.

KAIST는 전산학부 김민수 교수 연구팀이 여러 대의 GPU 서버를 활용하는 기존 방식과 달리 한 대의 GPU 서버에서 대규모 풀(full) 그래프 AI 모델을 빠르게 학습하고 추론할 수 있는 GNN 시스템 ‘FlexGNN(플렉스지엔엔)’을 개발했다고 13일 밝혔다.

전체 그래프를 모두 학습에 활용하는 풀 그래프 방식이 더욱 우수한 정확도를 보이지만, 학습 과정에서 대규모의 중간 데이터(intermediate data)가 발생해 메모리 부족 현상이 빈번히 발생하고, 여러 서버 간의 데이터 통신으로 인해 학습 시간이 길어지는 한계가 있었다.

뉴스픽의 주요 문장 추출 기술을 사용하여 “이뉴스투데이” 기사 내용을 3줄로 요약한 결과입니다. 일부 누락된 내용이 있어 전반적인 이해를 위해서는 본문 전체 읽기를 권장합니다.

이 콘텐츠를 공유하세요.

알림 문구가 한줄로 들어가는 영역입니다

이 콘텐츠를 공유하세요.