이어 동물의 현재 상황에 대한 가설을 세우고, 가설의 예측 오류를 바탕으로 행동 전략을 비대칭적으로 업데이트하는 새로운 적응형 강화학습 이론과 모델을 제안했다.
최신 인공지능 모델은 효율적 문제 해결에 집중하다 보니 인간이나 동물의 행동을 잘 설명하지 못하는 경우가 많은 반면, 제안 모델은 예상치 못한 사건에 대한 동물의 행동을 최신 인공지능 모델 대비 최대 31%, 평균 15% 더 잘 예측함을 보였다.
이 교수는 "이번 연구는 인공지능의 강화학습 이론만으로 설명할 수 없는 뇌의 가설 기반 적응학습 원리를 밝혀낸 흥미로운 사례ˮ라면서 "스스로 의심하고 검증하는 뇌과학 이론을 대규모 인공지능 시스템 설계와 학습 과정에 반영하면 신뢰성을 높일 수 있을 것ˮ이라고 말했다..
뉴스픽의 주요 문장 추출 기술을 사용하여 “이뉴스투데이” 기사 내용을 3줄로 요약한 결과입니다. 일부 누락된 내용이 있어 전반적인 이해를 위해서는 본문 전체 읽기를 권장합니다.