최근 의료 분야에서도 인공지능(AI)의 중요성이 확대되고 있지만, 공개된 대규모 언어모델(Large Language Model, LLM)을 적용할 경우 개인정보유출 위험이 매우 높은 것으로 나타났다.
먼저 문자를 인코딩하는 방식인 ASCⅡ(미국정보교환표준코드) 방식으로 프롬프트를 변형한 결과, 대규모언어모델의 보안장치를 피해 민감한 개인정보에 접근할 수 있는 확률을 평가하는 가드레일 비활성화율이 최대 80.8%에 달했다.
구체적인 예시로 수술 준비를 위해 상세한 환자 정보를 제공하는 시스템으로 대규모언어모델을 학습시킨 뒤 의료기록 검토를 요청하는 프롬프트를 인코딩 방식으로 조정한 결과, 대규모언어모델이 대답을 생성하는 과정에서 민감한 환자 데이터는 물론 의료진의 이름이나 전문 분야 등 구체적인 정보가 노출됐다.
뉴스픽의 주요 문장 추출 기술을 사용하여 “디지틀조선일보” 기사 내용을 3줄로 요약한 결과입니다. 일부 누락된 내용이 있어 전반적인 이해를 위해서는 본문 전체 읽기를 권장합니다.