KAIST는 전기및전자공학부 김준모 교수 연구팀이 변환 레이블(transformational labels) 없이도 스스로 변환 민감 특징(transformation-sensitive features)을 학습할 수 있는 새로운 시각 인공지능 모델 STL(Self-supervised Transformation Learning)을 개발했다고 13일 밝혔다.
연구팀이 개발한 시각 인공지능 모델 STL은 스스로 이미지의 변환을 학습해 이미지 변환의 종류를 인간이 직접 알려주면서 학습하는 기존 방법들보다 높은 시각 정보 이해 능력을 보였다.
연구팀이 제안한 STL은 변환 라벨 없이 변환 정보를 학습할 수 있도록 설계된 새로운 학습 기법으로, 라벨 없이 변환 민감 특징을 학습할 수 있다.
뉴스픽의 주요 문장 추출 기술을 사용하여 “이뉴스투데이” 기사 내용을 3줄로 요약한 결과입니다. 일부 누락된 내용이 있어 전반적인 이해를 위해서는 본문 전체 읽기를 권장합니다.