카이스트는 홍승범 신소재공학과 교수 연구팀이 미국 노스웨스턴대 크리스 울버튼(Chris Wolverton) 교수팀과 국제 공동연구를 통해, 밀도범함수이론(DFT) 기반의 형성에너지(합금이 얼마나 안정적인지를 나타내는 값) 데이터를 활용해 합금이 녹을 때 성분이 유지되는지를 예측하는 고정확도 머신러닝 모델을 개발했다고 14일 밝혔다.
연구팀은 밀도범함수이론을 통해 계산한 형성에너지와, 기존의 실험적 융해 반응 데이터를 머신러닝에 결합해 4536개의 이원계 화합물에 대한 융해 반응 유형을 학습한 후, 그 예측 모델을 구성했다.
홍승범 카이스트 교수는 “이번 연구는 계산과 실험 데이터, 그리고 머신러닝의 융합을 통해 기존의 경험적 합금 설계 방식에서 벗어나 데이터 기반의 예측적 소재 개발이 가능하다는 가능성을 보여준 사례”라며 “향후 생성형 모델, 강화학습 등의 최신 AI 기술을 접목하면 완전히 새로운 합금을 자동으로 설계하는 시대가 열릴 것”이라고 말했다..
뉴스픽의 주요 문장 추출 기술을 사용하여 “이뉴스투데이” 기사 내용을 3줄로 요약한 결과입니다. 일부 누락된 내용이 있어 전반적인 이해를 위해서는 본문 전체 읽기를 권장합니다.